starcall.alignment
index
/home/nicho/starcall-docs/starcall/alignment.py

 
Modules
       
numpy
numba
matplotlib.pyplot
scipy
skimage
sklearn

 
Classes
       
builtins.object
DistanceMatrix

 
class DistanceMatrix(builtins.object)
    DistanceMatrix(size1, size2=None, dtype=<class 'numpy.float32'>, value=None)
 

 
  Methods defined here:
__getitem__(self, indices)
__init__(self, size1, size2=None, dtype=<class 'numpy.float32'>, value=None)
Initialize self.  See help(type(self)) for accurate signature.
__setitem__(self, indices, item)

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

 
Functions
       
fastnorm(x)
fastnorm_overload(x)
filter_pairs1(poses1, poses2, matches, n_neighbors=25)
float_string_dist(vec1, vec2, penalty=10)
match_dots(position_list, min_dots=2, pair_dots_func=<function pair_dots2 at 0x7f2e1f003f40>, **kwargs)
Matches groups of points between the sets given in position_list
Uses the provided pair_dots_func to match dots into pairs
between each set, then combines these pairs into larger groups
pair_dots1(poses1, poses2)
pair_dots2(poses1, poses2, n_neighbors=10, penalty=5, progress=False, debug=True, max_distance=None)
pair_dots3(poses1, poses2, n_neighbors=50)
pair_dots4(poses1, poses2)
pair_dots_func(poses1, poses2, dist_func, pass_indices=False, progress=False, debug=True)
Finds pairs of dots where each one is the closest to the other, based on the given
distance function.
    poses1, poses2: numpy arrays of positions that will be passed to the dist_func
    dist_func: a function that accepts either two poses from poses1 and poses2
        or two indices (see pass_indices) and returns a single float, the distance score
    pass_indices: if true, the indices into poses1, poses2 are passed to dist_func
    progress: if true, a progress bar is displayed
    debug: if true, debug info is printed to the console
pair_dots_nn_func(poses1, poses2, dist_func, neighbors=100, pass_indices=False, progress=False, debug=True)
Finds pairs of dots where each one is the closest to the other, based on the given
distance function. Only considers matches in the n nearest neighbors of each point,
where n is the argument neighbors.
    neighbors: number of nearest neighbors to consider when searching for pairs. This
        can also be the actual neighbors already calculated, in this case it would be
        a numpy array of shape (len(poses1), n_neighbors) of indices into poses2.
    See pair_dots_func for documentation of other args.
prepare_dists(poses)